3.519 \(\int \frac{x^8}{(a+b x^2)^{9/2}} \, dx\)

Optimal. Leaf size=106 \[ -\frac{x^5}{5 b^2 \left (a+b x^2\right )^{5/2}}-\frac{x^3}{3 b^3 \left (a+b x^2\right )^{3/2}}-\frac{x}{b^4 \sqrt{a+b x^2}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )}{b^{9/2}}-\frac{x^7}{7 b \left (a+b x^2\right )^{7/2}} \]

[Out]

-x^7/(7*b*(a + b*x^2)^(7/2)) - x^5/(5*b^2*(a + b*x^2)^(5/2)) - x^3/(3*b^3*(a + b*x^2)^(3/2)) - x/(b^4*Sqrt[a +
 b*x^2]) + ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]]/b^(9/2)

________________________________________________________________________________________

Rubi [A]  time = 0.0419398, antiderivative size = 106, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 3, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {288, 217, 206} \[ -\frac{x^5}{5 b^2 \left (a+b x^2\right )^{5/2}}-\frac{x^3}{3 b^3 \left (a+b x^2\right )^{3/2}}-\frac{x}{b^4 \sqrt{a+b x^2}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )}{b^{9/2}}-\frac{x^7}{7 b \left (a+b x^2\right )^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[x^8/(a + b*x^2)^(9/2),x]

[Out]

-x^7/(7*b*(a + b*x^2)^(7/2)) - x^5/(5*b^2*(a + b*x^2)^(5/2)) - x^3/(3*b^3*(a + b*x^2)^(3/2)) - x/(b^4*Sqrt[a +
 b*x^2]) + ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]]/b^(9/2)

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^8}{\left (a+b x^2\right )^{9/2}} \, dx &=-\frac{x^7}{7 b \left (a+b x^2\right )^{7/2}}+\frac{\int \frac{x^6}{\left (a+b x^2\right )^{7/2}} \, dx}{b}\\ &=-\frac{x^7}{7 b \left (a+b x^2\right )^{7/2}}-\frac{x^5}{5 b^2 \left (a+b x^2\right )^{5/2}}+\frac{\int \frac{x^4}{\left (a+b x^2\right )^{5/2}} \, dx}{b^2}\\ &=-\frac{x^7}{7 b \left (a+b x^2\right )^{7/2}}-\frac{x^5}{5 b^2 \left (a+b x^2\right )^{5/2}}-\frac{x^3}{3 b^3 \left (a+b x^2\right )^{3/2}}+\frac{\int \frac{x^2}{\left (a+b x^2\right )^{3/2}} \, dx}{b^3}\\ &=-\frac{x^7}{7 b \left (a+b x^2\right )^{7/2}}-\frac{x^5}{5 b^2 \left (a+b x^2\right )^{5/2}}-\frac{x^3}{3 b^3 \left (a+b x^2\right )^{3/2}}-\frac{x}{b^4 \sqrt{a+b x^2}}+\frac{\int \frac{1}{\sqrt{a+b x^2}} \, dx}{b^4}\\ &=-\frac{x^7}{7 b \left (a+b x^2\right )^{7/2}}-\frac{x^5}{5 b^2 \left (a+b x^2\right )^{5/2}}-\frac{x^3}{3 b^3 \left (a+b x^2\right )^{3/2}}-\frac{x}{b^4 \sqrt{a+b x^2}}+\frac{\operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{x}{\sqrt{a+b x^2}}\right )}{b^4}\\ &=-\frac{x^7}{7 b \left (a+b x^2\right )^{7/2}}-\frac{x^5}{5 b^2 \left (a+b x^2\right )^{5/2}}-\frac{x^3}{3 b^3 \left (a+b x^2\right )^{3/2}}-\frac{x}{b^4 \sqrt{a+b x^2}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )}{b^{9/2}}\\ \end{align*}

Mathematica [A]  time = 0.126931, size = 101, normalized size = 0.95 \[ \frac{\sqrt{a} \sqrt{\frac{b x^2}{a}+1} \sinh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{b^{9/2} \sqrt{a+b x^2}}-\frac{x \left (350 a^2 b x^2+105 a^3+406 a b^2 x^4+176 b^3 x^6\right )}{105 b^4 \left (a+b x^2\right )^{7/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^8/(a + b*x^2)^(9/2),x]

[Out]

-(x*(105*a^3 + 350*a^2*b*x^2 + 406*a*b^2*x^4 + 176*b^3*x^6))/(105*b^4*(a + b*x^2)^(7/2)) + (Sqrt[a]*Sqrt[1 + (
b*x^2)/a]*ArcSinh[(Sqrt[b]*x)/Sqrt[a]])/(b^(9/2)*Sqrt[a + b*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.015, size = 88, normalized size = 0.8 \begin{align*} -{\frac{{x}^{7}}{7\,b} \left ( b{x}^{2}+a \right ) ^{-{\frac{7}{2}}}}-{\frac{{x}^{5}}{5\,{b}^{2}} \left ( b{x}^{2}+a \right ) ^{-{\frac{5}{2}}}}-{\frac{{x}^{3}}{3\,{b}^{3}} \left ( b{x}^{2}+a \right ) ^{-{\frac{3}{2}}}}-{\frac{x}{{b}^{4}}{\frac{1}{\sqrt{b{x}^{2}+a}}}}+{\ln \left ( x\sqrt{b}+\sqrt{b{x}^{2}+a} \right ){b}^{-{\frac{9}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^8/(b*x^2+a)^(9/2),x)

[Out]

-1/7*x^7/b/(b*x^2+a)^(7/2)-1/5*x^5/b^2/(b*x^2+a)^(5/2)-1/3*x^3/b^3/(b*x^2+a)^(3/2)-x/b^4/(b*x^2+a)^(1/2)+1/b^(
9/2)*ln(x*b^(1/2)+(b*x^2+a)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(b*x^2+a)^(9/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.46109, size = 736, normalized size = 6.94 \begin{align*} \left [\frac{105 \,{\left (b^{4} x^{8} + 4 \, a b^{3} x^{6} + 6 \, a^{2} b^{2} x^{4} + 4 \, a^{3} b x^{2} + a^{4}\right )} \sqrt{b} \log \left (-2 \, b x^{2} - 2 \, \sqrt{b x^{2} + a} \sqrt{b} x - a\right ) - 2 \,{\left (176 \, b^{4} x^{7} + 406 \, a b^{3} x^{5} + 350 \, a^{2} b^{2} x^{3} + 105 \, a^{3} b x\right )} \sqrt{b x^{2} + a}}{210 \,{\left (b^{9} x^{8} + 4 \, a b^{8} x^{6} + 6 \, a^{2} b^{7} x^{4} + 4 \, a^{3} b^{6} x^{2} + a^{4} b^{5}\right )}}, -\frac{105 \,{\left (b^{4} x^{8} + 4 \, a b^{3} x^{6} + 6 \, a^{2} b^{2} x^{4} + 4 \, a^{3} b x^{2} + a^{4}\right )} \sqrt{-b} \arctan \left (\frac{\sqrt{-b} x}{\sqrt{b x^{2} + a}}\right ) +{\left (176 \, b^{4} x^{7} + 406 \, a b^{3} x^{5} + 350 \, a^{2} b^{2} x^{3} + 105 \, a^{3} b x\right )} \sqrt{b x^{2} + a}}{105 \,{\left (b^{9} x^{8} + 4 \, a b^{8} x^{6} + 6 \, a^{2} b^{7} x^{4} + 4 \, a^{3} b^{6} x^{2} + a^{4} b^{5}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(b*x^2+a)^(9/2),x, algorithm="fricas")

[Out]

[1/210*(105*(b^4*x^8 + 4*a*b^3*x^6 + 6*a^2*b^2*x^4 + 4*a^3*b*x^2 + a^4)*sqrt(b)*log(-2*b*x^2 - 2*sqrt(b*x^2 +
a)*sqrt(b)*x - a) - 2*(176*b^4*x^7 + 406*a*b^3*x^5 + 350*a^2*b^2*x^3 + 105*a^3*b*x)*sqrt(b*x^2 + a))/(b^9*x^8
+ 4*a*b^8*x^6 + 6*a^2*b^7*x^4 + 4*a^3*b^6*x^2 + a^4*b^5), -1/105*(105*(b^4*x^8 + 4*a*b^3*x^6 + 6*a^2*b^2*x^4 +
 4*a^3*b*x^2 + a^4)*sqrt(-b)*arctan(sqrt(-b)*x/sqrt(b*x^2 + a)) + (176*b^4*x^7 + 406*a*b^3*x^5 + 350*a^2*b^2*x
^3 + 105*a^3*b*x)*sqrt(b*x^2 + a))/(b^9*x^8 + 4*a*b^8*x^6 + 6*a^2*b^7*x^4 + 4*a^3*b^6*x^2 + a^4*b^5)]

________________________________________________________________________________________

Sympy [B]  time = 8.09565, size = 2980, normalized size = 28.11 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**8/(b*x**2+a)**(9/2),x)

[Out]

105*a**(205/2)*b**45*sqrt(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt(a))/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a)
+ 630*a**(203/2)*b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 210
0*a**(199/2)*b**(105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**
(195/2)*b**(109/2)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) + 630*a**(20
3/2)*b**46*x**2*sqrt(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt(a))/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630
*a**(203/2)*b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**
(199/2)*b**(105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/
2)*b**(109/2)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) + 1575*a**(201/2)
*b**47*x**4*sqrt(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt(a))/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**
(203/2)*b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199
/2)*b**(105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b
**(109/2)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) + 2100*a**(199/2)*b**
48*x**6*sqrt(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt(a))/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**(203
/2)*b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199/2)*
b**(105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b**(1
09/2)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) + 1575*a**(197/2)*b**49*x
**8*sqrt(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt(a))/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**(203/2)*
b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199/2)*b**(
105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b**(109/2
)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) + 630*a**(195/2)*b**50*x**10*
sqrt(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt(a))/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**(203/2)*b**(
101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199/2)*b**(105/
2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b**(109/2)*x*
*10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) + 105*a**(193/2)*b**51*x**12*sqrt
(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt(a))/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**(203/2)*b**(101/
2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199/2)*b**(105/2)*x
**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b**(109/2)*x**10*
sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) - 105*a**102*b**(91/2)*x/(105*a**(205
/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**(203/2)*b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103
/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199/2)*b**(105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*
x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b**(109/2)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12
*sqrt(1 + b*x**2/a)) - 665*a**101*b**(93/2)*x**3/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**(203/2)
*b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199/2)*b**
(105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b**(109/
2)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) - 1771*a**100*b**(95/2)*x**5
/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**(203/2)*b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(2
01/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199/2)*b**(105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2
)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b**(109/2)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**
(111/2)*x**12*sqrt(1 + b*x**2/a)) - 2549*a**99*b**(97/2)*x**7/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 6
30*a**(203/2)*b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a
**(199/2)*b**(105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(19
5/2)*b**(109/2)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) - 2096*a**98*b*
*(99/2)*x**9/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**(203/2)*b**(101/2)*x**2*sqrt(1 + b*x**2/a)
+ 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199/2)*b**(105/2)*x**6*sqrt(1 + b*x**2/a) + 15
75*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b**(109/2)*x**10*sqrt(1 + b*x**2/a) + 105*a*
*(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) - 934*a**97*b**(101/2)*x**11/(105*a**(205/2)*b**(99/2)*sqrt(1 +
b*x**2/a) + 630*a**(203/2)*b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**
2/a) + 2100*a**(199/2)*b**(105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a)
 + 630*a**(195/2)*b**(109/2)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) -
176*a**96*b**(103/2)*x**13/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**(203/2)*b**(101/2)*x**2*sqrt(
1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199/2)*b**(105/2)*x**6*sqrt(1 +
b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b**(109/2)*x**10*sqrt(1 + b*x*
*2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a))

________________________________________________________________________________________

Giac [A]  time = 2.36694, size = 105, normalized size = 0.99 \begin{align*} -\frac{{\left (2 \,{\left (x^{2}{\left (\frac{88 \, x^{2}}{b} + \frac{203 \, a}{b^{2}}\right )} + \frac{175 \, a^{2}}{b^{3}}\right )} x^{2} + \frac{105 \, a^{3}}{b^{4}}\right )} x}{105 \,{\left (b x^{2} + a\right )}^{\frac{7}{2}}} - \frac{\log \left ({\left | -\sqrt{b} x + \sqrt{b x^{2} + a} \right |}\right )}{b^{\frac{9}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(b*x^2+a)^(9/2),x, algorithm="giac")

[Out]

-1/105*(2*(x^2*(88*x^2/b + 203*a/b^2) + 175*a^2/b^3)*x^2 + 105*a^3/b^4)*x/(b*x^2 + a)^(7/2) - log(abs(-sqrt(b)
*x + sqrt(b*x^2 + a)))/b^(9/2)